
HKDSE Essentials

for Physics and Combined Science

Yung Lit Hung

PEARSON

ALWAYS LEARNING

Contents

Preface			
Part	One Tips for Scoring Higher		
Tips for Scoring Higher			
	■ Three advices ■ Signs and directions ■ Big picture		
Part [•]			
E1.	Charge, E-field and Potential	11	
	■ Remember me ■ Ensure you know these ■ Multiple-choice questions		
	■ Short questions ■ Long questions ■ Shoot-the-stars questions		
E2.	Electric Circuit	27 41	
E3.	B-field and Electromagnet		
E4.	Moving Charges in <i>B</i> -field		
E5. E6.	Electromagnetic Induction A.c. Transmission and Mains	69 89	
EO.	A.C. Halishission and Mains	09	
Part ⁻	Three Revision Exercises		
E7.	Skill-sharpening Exercises	107	
	■ A. From-a-graph ■ B. Which-graph ■ C. Explain-a-phenomenon		
	■ D. Describe-a-method ■ E. Design-a-circuit		
E8.	Integrated Exercises	121	
Des	sert: Selected Overseas Questions	125	
Арре	ndices		
Α.	Intensive Basic Training	131	
	■ A1. Converting units $ $ ■ A2. Changing subjects and solving equations $ $		
	■ A3. Drawing circuit diagrams ■ A4. Calculating equivalent resistance		
	■ A5. Determining directions of <i>F</i> , <i>B</i> and <i>I</i> ■ A6. Sense of dependence		
Β.	Rough Idea of Your Level	145	
C.	Useful Formulas and Constants	146	

Tips for Scoring Higher

Practice makes perfect, only if you are on the right track.

Three advices

1. Highlight the keywords and data

Use a highlight pen when reading questions. Don't miss the clues.

2. Let the equations guide your thinking

Concentrate on the variables and their relations. Don't just put the numerical values into the equations. The *Remember me* section in each topic helps.

3. Read the solution guide

even if you get the right answers. If so, you will learn much more.

Tips:

Three advices

Big picture

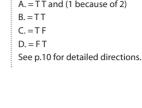
How to read a question Why my answer looks so strange

Electric Circuit

Reason-assertion

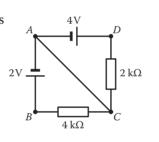
1st statement

- 1. Thick wires are used for circuits involving large currents.
- 2. The more identical bulbs connected in parallel with a practical cell with some internal resistance, the dimmer the bulbs.
- **3.** A heating element of a higher power has thicker wires.

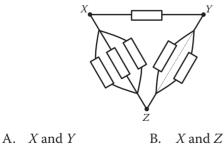

2nd statement

Thick wires have small resistance.

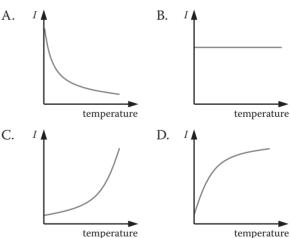
The more identical bulbs connected in parallel with a practical cell, the smaller the current drawn from the cell.


By $P = I^2 R$, the larger the resistance, the higher the power for the same current.

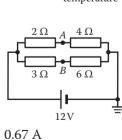
Reminder: $A_{.} = TT$ and (1 because of 2) $B_{i} = TT$ $C_{1} = TF$ D. = F T

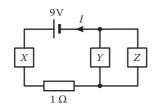

Think and solve

4. Two cells and two resistors are connected as shown. Neglect the internal resistance of the cells. What are (a) the p.d. $\operatorname{across} AC$ and (b) the current through AC?

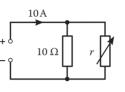


	(a)	(b)
А.	0 V	0 mA
B.	4 V	0 mA
C.	0 V	2.5 mA
D.	4 V	2.5 mA


5. Six identical resistors are connected as shown in the figure. Between which two points is the equivalent resistance the max.?


C. Y and ZD. All are equal. 6. A semiconductor is connected across a 9 V battery. Which of the following graphs best shows the change of current *I* that the battery delivers as a function of temperature?

7. Four resistors are connected to a cell as shown. If a 1 Ω resistor is connected across *AB*, what will be the current flowing through it?



8. Three unknown devices *X*, *Y* and *Z* are connected in a circuit as shown. It is found that *X* and *Y* dissipate 10 W and 8 W

respectively, while Z supplies 4 W to the circuit. If the battery can provide a max. power of 36 W, what is the current I in the main loop?

9. A rheostat r and a 10 Ω resistor are in parallel with a power supply across them. The current from the supply is always kept

constant at 10 A. The rheostat *r* is adjusted to maximize the power *P* dissipated by *r*. What is the max. *P*?

Α.	125 W	В.	250 W
C.	500 W	D.	1000 W

10. Paul has two resistance wires *X* and *Y* made of the same material. He attaches one end of *X* to an end of *Y* to form a longer wire. If the free end of *X* is set at a potential of 8 V, and the free end of *Y* at 1 V, what is the potential at the junction of the two wires approximately?

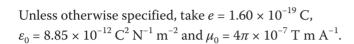
	wire	length	c	ross-sectional area	
	Х	64 cm	2.3 mm ²		
Y 32 cm		32 cm	4.6 mm ²		
A.	1.4 V		В.	2.4 V	
C.	3.5 V		D.	6.6 V	

B

11. (Very challenging) A right-angle triangular plate is as shown and AB = BD = BC. The resistance across AC is r. What is the resistance across BD?

А.	0.25 <i>r</i>	В.	0.5r
С.	r	D.	2r

12. (Very challenging) A cubic frame has 12 identical edges. Each edge has the same resistance *r*. Find the equivalent resistance *R* across (a) cube diagonal AG and (b) face diagonal AF.


a) cube diagonal AG and (b) face diagonal AF.

(Hint: Note the equipotential points. They can be shorted without affecting the circuit.) (6 marks)

Skill-sharpening Exercises

107

Skill-sharpening Exercises

A. From-a-graph

E7

1. A point charge *q* is solely under the influence of an elec. field around another charge *Q*. The graph below shows how its acceleration *a* varies with time *t*.

Which of the following statements **MUST** be correct?

B. (2) only

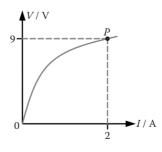
B.

D. (1), (2) and (3)

I/mA

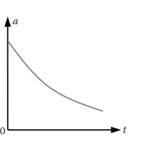
80

0

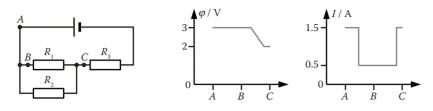

greater than that by X

D. cannot be determined

- (1) The elec. force on q decreases with time.
- (2) q is moving away from Q.
- (3) q is positive.
- A. (1) only
- C. (1) and (2) only
- 2. A mobile phone uses a battery *X* that is capable of delivering a constant current of 80 mA for 5 hours. The graph of current against time for another battery *Y* is as shown.


What is the charge delivered by this battery?

- A. the same as that by X
- C. less than that by X
- 3. The voltage-current relation of an elec. component is shown. Which of the following statement(s) is/are correct?
 - (1) Resistance at P is 4.5 Ω .
 - (2) The resistance of the component decreases with increasing *I*.
 - (3) The component may be a tungsten wire.
 - A. (2) only B. (3) only
 - C. (1) and (2) only D. (1) and (3) only


- From-a-graph
- Which-graph
- Explain-a-phenomenon
- Describe-a-method
- Design-a-circuit

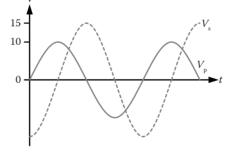
-*t /* h

4. Three resistors, R_1 , R_2 and R_3 are connected to an ideal cell. The variation of potential and current along path *ABC* is shown below.

Find the resistance of R_2 and R_3 . Assume the wires have no resistance.

	R_2	R_3
Α.	2Ω	1.33 Ω
B.	1Ω	1.33 Ω
C.	2Ω	0.67 Ω
D.	1Ω	0.67 Ω

5. The graph shows the output e.m.f. of a simple generator.

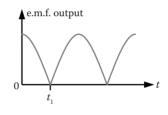

Which of the following statements are correct?

- (1) The generator consists of a commutator, instead of slip rings.
- (2) The no. of magn. field lines through the generator coil is max. at $t = t_1$.
- (3) The curve becomes negative (turns upside down) if the generator coil is rotated in the opposite direction.
- A. (1) and (2) only B. (1) and (3) only
- C. (2) and (3) only D. (1), (2) and (3)
- **6.** In a transformer, the primary and secondary voltages have the relation with time as shown.

What is the turns ratio $N_{\rm p}$: $N_{\rm s}$?

A. 30:10 B. 15:10

C. 1:0.667 D. 2:3


(For full-X physics only)

A wire loop is placed in a uniform magn. field.

Which of the following will give an induced current as shown?

- (1) The magn. field changes at an increasing rate.
- (2) The area enclosed by the coil shrinks at a constant rate.
- (3) The coil rotates about XY.

А.	(1) only	В.	(2) only
С.	(1) and (2) only	D.	(2) and (3) only

Skill-sharpening Exercises

Exercise 5 (3 min)

- **1.** Which of the following is a possible unit of electric field?
 - A. $N m^{-1}$
 - B. $V m^{-1}$
 - C. $C N^{-1}$
 - D. N C^{-2}
- **2.** Which of the following is the correct unit of the electric constant ε_0 ?
 - A. $C^{-1} N^{-2} m^{-2}$
 - B. $C^2 N^{-1} m^{-2}$
 - $C. \quad C \ N \ m^{-1}$
 - D. $C^2 N^{-1} m^{-1}$
- **3.** Which of the following is a possible unit of electric charge?
 - A. mA h
 - B. NC
 - C. $V m^{-1}$
 - D. $A s^{-1}$
- 4. Which of the following is a quantity of electric force? Given $\beta = 9 \times 10^3$ N m² μ C⁻².

A.
$$\frac{1}{\beta} \left(\frac{3 \ \mu C}{2 \ cm} \right)$$

B. $\beta \left(\frac{3 \ \mu C}{2 \ cm} \right)$
C. $\frac{1}{\beta} \left(\frac{3 \ \mu C}{2 \ cm} \right)^2$
D. $\beta \left(\frac{3 \ \mu C}{2 \ cm} \right)^2$

(Q5-6: physics only)

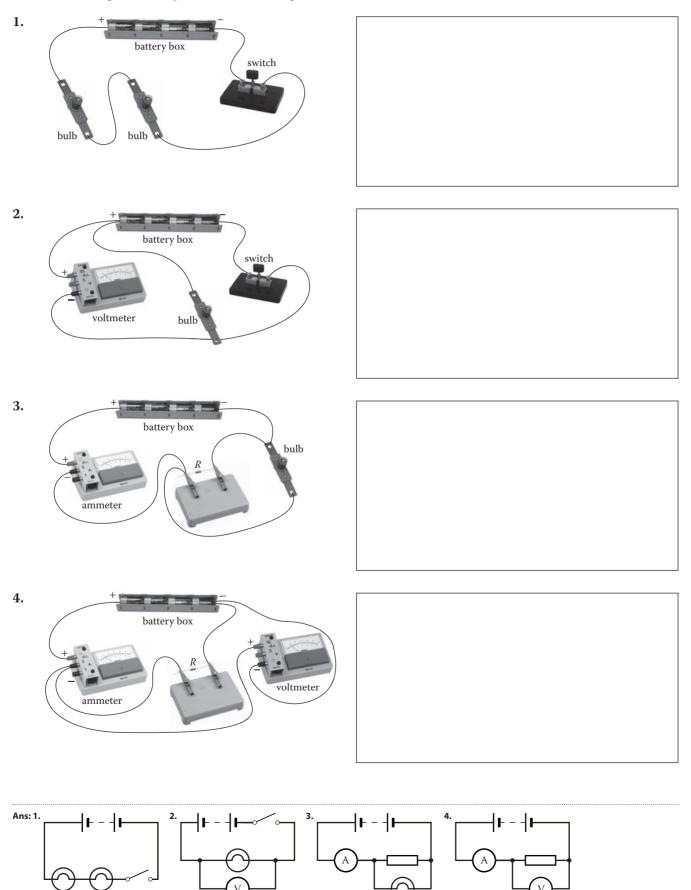
5. Which of the following is a quantity of magnetic field?

A.
$$\frac{10 \text{ N}}{(1 \text{ m})^2 \times 2 \text{ A}}$$
B.
$$\frac{\mu_0 \times 2 \text{ A}}{4\pi \times (2 \text{ m})}$$
C.
$$\frac{10 \text{ N}}{1 \text{ m} \times 2 \text{ A}}$$
D.
$$\frac{\mu_0 \times 2 \text{ A}}{2\pi \times (2 \text{ m})^2}$$

- **6.** Which of the following is a quantity of energy?
 - A. $3 \times 10^8 \text{ m s}^{-1} \times 3 \times 10^{-3} \text{ kg} \times 3 \times 10^8 \text{ m s}^{-2}$
 - $B. \quad 0.1 \ N \times 2 \ m^2$
 - C. $3 \times 10^8 \text{ m s}^{-1} \times 3 \times 10^{-3} \text{ kg} \times 3 \times 10^8 \text{ m s}^{-1}$
 - D. $5 V \times 8 C / 1 s$

Exercise 6 (3 min)

- 1. Which of the following is a possible unit of voltage?
 - A. $N m^{-1}$
 - B. $V m^{-1}$ C. $A \Omega^{-1}$
 - D. $W^{\overline{2}} \Omega^{\overline{2}}$
- 2. Which of the following is a possible unit of power?
 - A. $V \Omega$ B. $V^2 \Omega^{-1}$
 - C. ΑΩ
 - D. $A^2 \Omega^{-1}$
- **3.** Which of the following is a possible unit of resistance?
 - A. $W V^{-1}$
 - B. mV A
 - C. $kW mA^{-2}$
 - D. T m A
- **4.** Which of the following is a quantity of work done by electric force on a charge?


A.
$$\frac{2 \text{ m} \times 8 \text{ C}}{4\pi\mu_0 \times (1 \text{ m})^2}$$
B.
$$\frac{2 \text{ m} \times (8 \text{ C})^2}{4\pi\varepsilon_0 \times (1 \text{ m})^2}$$
C.
$$\frac{2 \text{ m}}{4\pi\varepsilon_0 \times (1 \text{ C})^2}$$
D.
$$\frac{8 \text{ C}}{4\pi\varepsilon_0 \times 1 \text{ m}}$$

(Q5-6: physics only)

- 5. Which of the following may be a quantity of induced e.m.f. by a magnetic field?
 - A. 50 Hz \times 2 m² \times 100 \times 2π \times 8 T
 - B. $(8 \text{ T})^2 \times 0.5 \text{ m} \times 3.5 \text{ m} \text{ s}^{-1}$
 - C. $0.5 \text{ m} \times 5 \text{ C} \times 3.5 \text{ m s}^{-1}$
 - D. $8 T \times 2 m^2 / (0.2 s)^2$
- 6. Which of the following is a quantity of mass?
 - A. 931.5 MeV
 - B. 931.5 eV / $(3 \times 10^8 \text{ m s}^{-1})$
 - C. 931.5 MeV / $(3 \times 10^8 \text{ m s}^{-2})$
 - D. 1.492×10^{-10} J / $(3 \times 10^{10} \text{ cm s}^{-1})^2$

A3 Drawing circuit diagrams

Draw circuit diagrams to represent the following circuits.

